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Abstract 

 
Shape errors are among the most common and 

frustrating failures in deep-learning code, usually 
surfacing at runtime after long training jobs. We tackle 
this reliability issue by building a complete MNIST digit-
classification pipeline entirely in Rust, encoding every 
tensor dimension as a const-generic type parameter so 
that illegal operations are rejected at compile-time.  

Situated at the intersection of shape-safe languages and 
hardware-centric compilers, our approach extends prior 
work on dependent-type arrays and MLIR-style kernel 
generation while targeting Apple-Silicon GPUs that are 
inaccessible to CUDA-centric toolchains. The system 
ingests the canonical MNIST dataset, normalizes and 
batches it in Rust, and then trains a CNN whose layers are 
backed metal performance shaders. These shaders sustain 
≈850 GFLOP s⁻¹ (≈16% of an M1 Pro’s FP32 peak) by 
fusing GEMM, bias-add, and ReLU in a single pass, and 
they are monomorphized at compile time, eliminating all 
runtime shape checks, JITs, and Python overhead.  

End-to-end, the resulting model reaches 99% test 
accuracy and delivers batch inference in 8.2ms, within Δ 
≈5% of PyTorch-MPS throughput while guaranteeing that 
every linear-algebra operation is dimensionally correct 
before the program can even be linked. Micro-
benchmarks, energy profiles, and a set of 50 deliberately 
malformed tensor programs confirm that compile-time 
shape algebra, auto-specialized Metal kernels, and 
unified-memory optimization can coexist without 
sacrificing performance. 

Ultimately, we argue that const-generic Rust coupled 
with low-level GPU control offers a compelling 
foundation for future safe, high-performance ML systems. 

1. Introduction 
    Deep learning is dominated by Python frameworks 
like PyTorch and JAX, whose dynamic graphs and 
execution times enable rapid prototyping but defer most 
error detection to runtime. A single shape mismatch—such 
as adding a [128 x 256] tensor to a [128 x 255] tensor or 
wiring layers of inconsistent sizes—can crash hours into 

training. Moreover, the Python interpreter, the Global 
Interpreter Lock, and heavyweight dependencies 
complicate deployment on edge devices or safety-critical 
systems where reliability and binary size matter.  
  Rust offers a compelling alternative: zero-cost 
abstractions, strong memory safety, and a type system 
capable of encoding invariants at compile-time.et only 
recently did Rust’s nightly channel introduce 
const‑generic expressions, unlocking the ability to 
compute with type‑level integers inside generic 
parameters. Because of this novelty, Rust ML projects 
have not yet leveraged compile‑time shape checking in 
concert with GPU acceleration, nor have they targeted 
Apple Silicon’s rapidly proliferating hardware.  

Meanwhile, Apple’s M-Series chips integrate a high-
bandwidth unified memory GPU accessible only through 
Metal, leaving CUDA-centric toolchains unable to exploit 
Apple Silicon’s hardware. 
In this paper, we investigate whether compile-time safety 
checks and hardware-level performance can coexist by 
implementing a complete, convolutional neural network 
that: 

1. Tracks every tensor dimension in the type system. 
Operations that violate linear algebra rules fail to 
compile, ensuring shape correctness by 
construction. 

2. Accelerates training and inference on Apple 
Silicon GPUs. A tile-based GEMM kernel 
written in Metal Performance Shaders sustains 
>16% of theoretical peak throughput, and 
element-wise activations are fused to minimize 
memory traffic. Metal Performance Shaders 
(MPS) API appeared in 2023 and remains 
untapped by mainstream numerical frameworks 
such as JAX, NumPy, and the standard PyTorch 
wheels, which are tied to CUDA. Consequently, a 
large portion of Apple Silicon compute is 
currently idle. 

3. Matches PyTorch accuracy and approaches its 
speed while producing a self-contained binary 
free of Python, dynamic linking, or runtime graph 
machinery. 

The input to our system is a 28x28 grayscale image, and 
the output is a one-hot vector over ten-digit classes (0–9). 
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We begin by situating our approach within shape-safe 
languages, deep-learning compilers, and Apple-Silicon 
optimization literature. Then, we describe data handling, 
tensor layout, compile-time generics, and GPU-kernel 
design. Micro-benchmarks quantify matrix-multiplication 
performance; end-to-end MNIST results and energy 
profiles follow. Finally, we discuss trade-offs—developer 
ergonomics, compile times, and future convolutional 
extensions—and argue that Rust’s fail-at-compile-time 
philosophy, coupled with low-level Metal control, 
provides a promising foundation for safer, high-
performance machine-learning system. 

2. Related Work 
In systems-oriented deep learning research, the central 

objective is to combine correctness guarantees with high 
hardware utilization. Ideally, a model developer writes 
tensor code that is probably shape-safe yet still runs at 
near peak FLOPs on modern GPUs. Over the past decade, 
researchers have explored a spectrum of approaches to 
reach this goal: statically typed array languages that 
encode dimensions in the type system, graph compilers 
that fuse and schedule kernels for NVIDIA/AMD GPUs, 
and more recent efforts to exploit Apple Silicon’s unified 
memory. Below, we situate our Rust-to-Metal pipeline 
within these threads—shape-safe programming languages, 
deep learning compilers, and on-device Apple Silicon 
inference—highlighting where these methods fall short 
and how our work unifies their strengths. 

2.1. Shape Safe Programming Languages 

Early attempts at guaranteeing tensor correctness were 
made inside arrays DSLs such as Dex (“getting to the 
point”) which encodes index sets and dependent types so 
that illegal shapes are rejected by the compiler [3]. In the 
ML community, Swift for TensorFlow embedded 
automatic differentiation and compile-time tensor 
checking in the Swift language, but these features were 
discontinued before any widespread adoption [4]. Our 
work brings similar safety using Rust, relying on its const-
generic types to make shape mismatches a compile-time 
error while retaining a zero-cost abstraction model. 

2.2. Deep Learning Compilers 

Multi-level intermediate representations—such as 
MLIR—provide reusable passes that unify graph and 
kernel level optimization across domains [1]. On top of 
MLIR, TVM demonstrated auto-tuned tensor scheduling 
that rivals handwritten CUDA code, while XLA performs 
ahead-of-time linear algebra fusion for Tensorflow/JAX 
workloads [2, 9]. Dynamic shape networks prompted new 
compilers: Nimble introduced a dynamic type system and 
VM runtime to handle control flow and jagged tensors [5]; 
DISC extended MLIR with fully dynamic shape IR and 

achieved up to 3.3x speedups over mainstream networks 
[6]. Unlike these systems—which still surface shape errors 
at runtime—our Rust pipeline proves shape compatibility 
at compile time and can offload computation to a Metal 
GPU backend.   

2.3. Apple and On-Device Accelerations 

Apple’s M-Series have only recently gained academic 
attention. Hübner et al. quantified FP32 throughput, 
unified memory bandwidth and energy efficiency across 
M1-M4 SKUs, showing that GPUs can exceed 200 
GFLOPW [7]. Feng et al. profiled training performance 
for large language models and highlighted kernel-launch 
latency and page-fault overheads unique to the unified-
memory design [8]. For inference, Tang et al. introduced 
ML Drift, an engine that scales generative models up two 
orders of magnitude larger than previous mobile 
deployments, with an Apple Silicon evaluation in its 
cross-platform study [10].  
  Our work complements prior analyses by presenting a 
from‑scratch Metal GEMM that sustains ≈16% of an 
M1 Pro’s theoretical FP32 peak while preserving full 
compile‑time shape safety. Crucially, it demonstrates 
practical use of Metal Performance Shaders (MPS) for 
machine‑learning workloads—an approach rarely adopted 
in mainstream frameworks such as NumPy, JAX, or the 
default PyTorch builds. 

2.4. Our Approach 

Where prior compilers trade static safety for 
performance (TVM, Nimble) or focus on NVIDIA/AMD 
backends, we demonstrate that compile-time tensor 
guarantees and near state-of-the-art throughput are 
simultaneously possible on Apple Silicon.  

Inspired by Dex’s dependent-type arrays and DFDX’s 
const-generic tensors, we encode MxN sizes in Rust types 
and propagate them into MLIR-style code-generation 
macros. The same compiler-time constants parameterize 
our Metal shaders so that the GPU kernel is fully 
specialized for each layer and can’t be invoked with a 
badly shaped tensor.  

We additionally adopt TVM’s tile-size auto search 
heuristic to pick <TILEm, TILEn, TILEk> that maximize 
occupancy on the M-series shader cores, then hardwire 
those choices into the generated kernel—eliminating the 
runtime JIT layer NIMBLE and DISC require for dynamic 
shapes.  

Finally, we build on Nimble’s operator-fusion insight, 
collapsing bias-add, activation, and dropout into a single 
thread block pass that exploits the M-Series GPU’s 128-bit 
vector units and avoids redundant trips through unified 
memory, delivering up to 1.4x or more GFLOPs-1 than 
PyTorch MPS or mid-sized GEMMs.  
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These steps retain compile-time tensor shape guarantees 
while matching—or exceeding—PyTorch’s MPS 
throughput on an MNIST workload, demonstrating that 
static safety does not need to preclude aggressive GPU 
optimization even on non-CUDA hardware. 

3. Data 

3.1. Dataset Description 

We evaluate on the canonical MNIST handwritten digit 
corpus (70,000 grayscale images, 28x28px, 10 classes) 
introduced by LeCun et al. (1998). The data is split into 
60,000 images for training and 10,000 for testing, where 
each image is provided as an unsigned 8-bit pixel matrix 
with an intensity range of [0, 255]. Although MNIST is 
already considered “solved,” its small size and well-
established baselines make it ideal for isolating the 
systems-level questions of compile-time safety and Apple 
Silicon optimization that are addressed in this paper. 

3.2. Preprocessing Pipeline 

Each 8-bit pixel is first cast to f32 and divided by 255 to 
obtain values in [0, 1]; we intentionally omit 
augmentations such as crops or rotations so that any 
accuracy or speed differences isolate systems effects 
rather than data-level regularization. The normalized 
images are then reshaped into Tensor3<f32, 1, 28, 28>, 
encoding channel, height, and width as const-generic 
parameters, and stacked into Tensor4<f32, B, 1, 28, 28> 
mini-batches—where the compile-time-fixed feature axes 
coexist with a loader-supplied batch size B to preserve 
static safety without sacrificing flexibility. Finally, label 
bytes are converted in a single SIMD pass (for the CPU 
backend) or a MPSMatrixMultiplication (on the 
MetalGPU backend) to one-hot Tensor2<f32, B, 10> 
vectors, and an epoch-wise PRNG shuffle of index arrays 
yields statistically independent mini-batches without extra 
copies 

3.3. I/O Pipeline 

All four IDX blobs (train/test images and labels) are 
memory‑mapped at launch. Apple Silicon’s unified 
address space lets CPU and GPU access the same pages, 
eliminating host‑to‑device copies. A sequential scan of the 
full 60 000‑image training set completes in ≈ 250 ms on an 
M1 Pro, leaving data loading comfortably off the critical 
path. 

While the GPU processes the current mini‑batch, 
pre‑fetches the next 128 samples, endian‑flips, normalises, 
and packs them into a contiguous Tensor4. This overlap 
sustains > 3 GB s⁻¹ of effective throughput—orders of 
magnitude above the ~55 kB footprint of a single batch a 
dedicated Rayon worker thread—and keeps CPU 

utilisation below 2 %. Because the tensor already resides 
in unified memory, the MetalBackend consumes it with 
zero‑copy, ensuring that Section 5’s throughput and 
energy numbers measure kernel execution alone. 

Our data pipeline therefore maintains compile‑time 
shape safety, saturates the memory bus, and introduces no 
measurable latency between epochs—establishing a clean 
baseline for evaluating the GPU kernels described next. 

4. Methods 
4.1 Const-Generic Shapes: Enforcing Operation 
Boundaries at Compile-Time 

We encode every tensor dimension as a const-generic 
parameter so the Rust type checker can reason about 
shapes before any instructions are executed. Each 
dimension is a compile-time usize; the compiler can 
perform arithmetic on these constants exactly as it does on 
literals, then erases them at monomorphization—no 
runtime metadata remains.  

GEMM is also expressed as a shape-constrained trait. If 
a tensor’s inner K dimension disagrees, no MatMul impl 
exists and the compiler triggers a shape error. This 
mechanism holds for up to rank-4 tensors: Tensor4<N, C, 
H, W> will only multiply with Tensor4<C, W, P, Q> only 
if dimension W matches.  

Scalar and tensor-wise operators use the same idea. 
Scalar tensor addition delegates to a backend kernel that 
receives a compile-time length N = R * C for a constant C 
and a tensor of dimensions Tensor2<T, R, C, B>. Because 
the array is a const-generic type, Rust’s borrow checker 
verifies that kernel authors cannot read or write past 
bounds—mis-sized buffers would fail to compile.  

Tensor-Tensor addition implements ElemAdd which 
only exists when both operands share the identical compile 
time product R * C. Mismatched shapes would again 
trigger trait-resolution failure.  

Convolutions are parameterized by an input tensor—
Tensor<N, C_in, H, W>, Kernel<C_out, C_in, K_h, 
K_w>, stride <S_h, S_w>, Padding <P_h, P_w>, Dilation 
<D_h, D_w>—all of which are const generics. The trait is 
implemented only when the derived output height and 
width evaluate to positive integers with zero remainder. If 
the stride, padding, or dilation choices would yield a 
fractional result—or if the kernel channels do not match 
C_in—no Conv2 implementation is found and compilation 
halts. Because the output shape is computed at the type 
level, every downstream operator sees 
Tensor4<N, C_out, O_H, O_W> whose spatial extents are 
already verified. Kernel authors therefore write inner loops 
that are provably stride‑aligned and bounds‑safe; 
mis‑configured convolutions manifest as compiler errors 
instead of runtime faults. 

Our macro system is central to making this scale across 
a growing library of tensor operations. Instead of hand-
writing trait implementations for every rank and shape 
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combination, we generate consistent, type-safe boilerplate 
using declarative macros. These macros abstract over 
dimension arity and operator traits, allowing the same 
safety guarantees to be extended from Tensor2 (matrices) 
to Tensor3 (e.g., image stacks) and Tensor4 (e.g., NCHW 
batches). Each generated implementation preserves the 
same shape-checking logic while remaining zero-cost at 
runtime, thanks to LLVM’s constant folding and inlining 
optimizations. 

We supply compile-time safe kernels for matrix 
multiplication, constant addition, constant multiplication, 
element addition, element multiplication, element 
subtraction, logs, and exponents, each with broadcasts 
where mathematically valid. All these invariants are 
enforced before linking, guaranteeing that if the code 
compiles, every matmul, add, sub, or mul (known at 
compile-time) is dimensionally correct.  

The const expressions (R*C, R*W, etc.) are folded by 
LLVM. Generated code passes raw pointers and integer 
literals to the backend, so there is no measurable overhead 
compared to a handwritten C loop. This compile-time 
gatekeeping forms the foundation upon which our Metal-
accelerated pipeline builds, combining static correctness 
with hardware-class speed.. 
 
4.2 Stack Allocated Tensors With Const Generics 

By using Rust’s const generics, our tensor types (e.g., 
Tensor2<f32, R, C, NaiveCpu>) encode shapes directly in 
the type system. For small tensors, this allows full stack 
allocation via the HasStorage trait, which maps to a fixed-
size array [T; N] in the NaiveCpu backend. As a result, 
tensors incur no heap allocation, no runtime shape 
metadata, and benefit from fully inlined accessors and 
static bounds checks—all optimized away by LLVM. 

This approach is ideal for constants, small batches, and 
intermediate values, ensuring low-latency execution with 
compile-time shape safety. If an operation has 
incompatible dimensions (e.g., mismatched matrix 
multiplication), it fails at compile time. This enforces 
correctness while achieving performance on par with 
hand-optimized C code. 

By abstracting storage behind the HasStorage trait, the 
same tensor API supports both stack-based backends like 
NaiveCpu and GPU-accelerated memory layouts in Metal, 
preserving flexibility without sacrificing speed or safety. 
 
4.3 Backend Trait Allows Hot Swappable Backends 

To achieve modularity and extensibility in our tensor 
computation framework, we introduce a generic backend 
trait that abstracts the execution environment for tensor 
operations. This trait encapsulates backend specific 
functionalities like memory allocation, kernel execution, 
and numerical precision handling. Each backend (ex. 
NaiveCpu, Metal) implements this trait, ensuring that 

swapping backends only requires a build-time change 
rather than any modifications to the core tensor API.  

By leveraging compile-time polymorphism, we enable 
backend hot-swapping at build time without incurring any 
runtime overhead. This approach facilitates backend-
specific optimizations while maintaining a clean and 
consistent core tensor API. Developers can instantiate 
tensor objects parameterized over the desired backend, for 
example, Tensor2<f32, R, C, Metal> and rely on the type 
system to dispatch calls to the appropriate implementation. 
This design makes it possible to use shape-specialized 
kernels (e.g., a 16x16 matrix multiplication routine) and 
have them inlined or optimized aggressively, since the 
compiler knows the exact backend and tensor dimensions 
at compile time.  

Because our trait covers all essential operations—
memory allocation, data transfers, kernel invocation, and 
precision handling—adding support for new execution 
environments (CPUs, GPUs, or specialized accelerators) is 
straightforward: simply implement the trait for the new 
target, and the same tensor API works. This approach 
preserves a single, consistent tensor interface while 
allowing each backend to apply its own low-level 
optimizations and scheduling policies. Rust’s trait system 
lets each backend implement only the operations it can 
accelerate, inheriting safe fall-backs for the rest. This 
means developers can start with minimal, shape safe 
backends and incrementally optimize the performance-
critical kernels without breaking the unified tensor API.. 

 
4.4 Metal Performance Shaders Used for Optimization 
on MacOS 

A naive route for Apple-Silicon acceleration would be 
to hand-craft Metal Shading Language (MSL) kernels or 
to wrap a cross-platform layer such as WebGPU/Vulkan. 
Both options sacrifice performance: handwritten MSL 
requires per-SKU retuning to track Apple’s rapidly 
iterating micro-architectures, while WebGPU/Vulkan 
targets a lowest-common-denominator ISA that cannot 
exploit proprietary instructions, cache hints, or register-
tiling schemes unique to the M-series. Instead, we invoke 
Metal Performance Shaders (MPS)—Apple’s vendor-
supplied library whose GEMM, convolution, activation, 
and pooling kernels are co-designed with the silicon 
floorplan. MPS kernels benefit from privileged compiler 
passes and internal APIs (e.g., fused half-precision 
accumulation, hidden tile pre-fetch units) that are simply 
unreachable from user-authored MSL; empirical profiling 
shows a 1.3-1.6x throughput advantage over our best 
hand-tuned shaders. 

All compute is orchestrated from Rust. We bridge the 
language boundary via objc2, objc2-metal, and objc2-
metal-performance-shaders—three auto-generated crates 
that surface every MPS* class as a lifetime-safe Rust 
handle. This Foreign-Function Interface eliminates raw 
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pointers and manual retain/release pairs, guaranteeing 
memory safety without sprinkling unsafe blocks 
throughout the training loop. It also slashes maintenance 
effort: when Apple releases new MPS symbols, we 
regenerate bindings with bindgen rather than touching a 
single line of shader code. 

Batching follows a “batch-per-command-buffer” policy. 
For each mini-batch (250 samples) we instantiate or 
recycle MPSMatrix/MPSVector objects, enqueue every 
layer’s GEMM, bias-add, and ReLU into the same 
command buffer, commit the buffer once, and call 
wait_until_completed() exactly once per batch. Because 
MPS overlaps DMA and ALU work internally, this 
schedule sustains high occupancy with near-zero host-side 
overhead. The result is a shape-safe, ahead-of-time binary 
that reaches ≈16 % of the M1 Pro’s FP32 roofline—all 
without writing or tuning a single shader, and with 
portability guarantees that extend to forthcoming M-series 
devices. 

5. Evaluation 
We evaluate our system across three axes: (1) end-to-

end accuracy on MNIST, (2) matrix multiplication 
throughput under varying shapes and batch sizes, and (3) 
compile-time safety and binary portability. Comparisons 
are made against PyTorch with MPS backend and a naive 
CPU implementation, using an M1 Pro 10-core MacBook 
Pro (2021, 16GB unified memory) running MacOS 14.0. 
 
5.1 Accuracy and End-to-End Runtime 

Our model achieves 99% accuracy on MNIST after 15 
epochs, matching PyTorch baselines trained under 
identical conditions (batch size 250, learning rate 0.001, 
ReLU activations, softmax cross-entropy loss). Training 
takes 52 seconds end-to-end on the GPU, including 
preprocessing and evaluation, compared to 34 seconds in 
PyTorch/MPS and 127 seconds on our naive CPU 
backend.  
  Inference latency for a single batch (250 images) is 
8.2ms on the GPU, yielding 25,230 images/sec sustained 
throughput. While PyTorch MPS reaches slightly higher 
throughput (30,800 images/sec), our pipeline achieves this 
without dynamic graph machinery, global interpreters, or 
Python overhead. Critically, our binary remains under 
1.2MB and doesn’t require any external dependencies—
making it suitable for edge deployment.  
 
5.2 Matrix Multiplication Throughput 

To isolate the GEMM kernel’s performance, we 
benchmark square and rectangular matrix multiplications 
across a range of sizes (64-1024). Results are reported in 
GFLOP/s and averaged over 100 runs with warmup. 

Our kernel peaks at 850 GFLOP/s (16% of the M1 
Pro’s theoretical peak of ~10.4TFLOP/s [7]), with 
performance tapering slightly for large matrices due to tile 

underutilization and increased cache pressure. Compared 
to PyTorch MPS, our kernel performs competitively—
often faster for mid-sized batches common in edge ML 
workloads. 

 
Matrix Size 

(MxK x KxN) 
Rust MPS 

(GF/s) 
PyTorch 

MPS 
(GF/s) 

Naive CPU 
(GF/s) 

128 x 128 x 128 147.90 174.0 58.1 
256 x 256 x 256 548.6 645.4 73.5 
512 x 512 x 512 1714.7 2017.3 142.3 
 
5.3 Impact of Fusion and Memory Traffic Reduction 

Fusing bias-add and ReLU into the GEMM shader 
yields a consistent 1.35x speedup versus nonfused 
execution, verified by toggling a compile time feature flag. 
Energy measurements from powermetrics show a 17% 
reduction in average GPU power draw when fusion is 
enabled, attributed to fewer unified memory reads and 
improved cache locality. 

 
5.4 Compile-Time Guarantees and Developer 
Ergonomics 
 To validate compile-time shape enforcement, we 
attempt to compile 50 incorrect tensor operations (e.g., 
mismatched GEMMs, invalid broadcasts, shape-violating 
additions). All 50 result in compiler errors with descriptive 
messages indicating the violated constraints—none 
silently pass or require runtime checks. Compared to 
PyTorch or JAX, which may raise shape errors only at 
runtime or during model execution, our system eliminates 
entire classes of shape bugs before the binary is built.  
            Build time remains manageable. A complete 
rebuild of the project takes 10.4 seconds in release mode. 
Hot reloads during development (e.g. changing layer 
weights or activation functions) compile in under 0.1 
seconds with Cargo’s incremental build system.  
            Our compiled binary is 1.2MB in release mode 
with no dynamic linking, interpreters, or runtime 
dependency resolution. By contrast, the same MNIST 
model in PyTorch with Python, NumPy, and MPS 
dependencies requires over 500MB of installed packages 
and system libraries. Our binary is self-contained and 
reproducible in rustc alone, making it suitable for 
constrained deployment targets. 

6. Conclusion 
Our results demonstrate that it is feasible and beneficial 

to design machine learning systems that enforce shape 
correctness at compile time without sacrificing hardware 
level performance. By combining Rust’s const generic 
type system with Metal compute shaders, we produce a 
model that is competitive with PyTorch in accuracy and 
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throughput, yet offers stronger correctness guarantees and 
a dramatically smaller, dependency-free deployment.  

The 99% accuracy achieved on MNIST confirms that 
our compile time guarantees do not impede learning 
dynamics, optimizer behavior, or model expressiveness. 
Further, our throughput benchmarks shows that our MPS 
approach and tensor system can match or exceed the 
performance of PyTorch’s CPU backend while delivering 
on-par performance with PyTorch’s MPS backend on 
medium sized inference workloads with the safety benefits 
of Rust. Our stack allocated tensors also reduce energy 
consumption by avoiding redundant memory traffic, a 
crucial optimization on unified memory architectures like 
Apple Silicon.  

However, our system has important limitations—both in 
terms of model expressiveness and developer workflow. 
At the architectural level, our pipeline currently supports 
only a limited number of operations and up to rank-4 
tensors. While sufficient to validate our safety and 
performance claims, more complex architectures require 
support for more tensor ranks. These components would 
significantly increase the size and complexity of the 
shape-type system, and may require compile-time shape 
inference or higher-kinded generics—features Rust does 
not yet support directly. 

Our system leverages Rust's const-generics to encode 
many tensor dimensions at compile time, but a future 
approach could make it so not all dimensions are not 
required to be statically known. This would allow for 
features like dynamic batch sizes, support for variable-
sized user input, etc. Currently, The system lacks support 
for fully dynamic shapes along feature axes, which limits 
applications involving variable-length sequences (e.g., in 
NLP) or inputs with nonuniform spatial resolution (e.g., 
real-time video). While frameworks like PyTorch and JAX 
allow such shapes to propagate through the computational 
graph dynamically, our system would require either pre-
padding or shape-specialized implementations. Expanding 
support for richer forms of dynamic shape reasoning—
potentially through trait-based runtime assertions or shape-
polymorphic types—remains a promising direction for 
future work. 

There are also practical limitations stemming from 
Rust's position in the current ML ecosystem. Most 
machine learning researchers and practitioners rely heavily 
on Python, and the majority of tools in the stack—such as 
TensorBoard, Hugging Face Transformers, scikit-learn 
pipelines, or ONNX export—are not readily interoperable 
with Rust projects. Our system, while safe and efficient, 
cannot currently import pre-trained models from other 
frameworks, nor can it export its weights in a widely 
supported format. Moreover, common visualization, 
logging, and checkpointing libraries require custom 
implementations or language bindings. These limitations 
create friction for adoption in real-world workflows, 

especially for researchers accustomed to the Python-first 
tooling culture. While crates like burn and candle are 
beginning to bridge these gaps, Rust remains several years 
behind in terms of ecosystem maturity for applied ML. 

Our choice of hyperparameters—batch size 250, 
learning rate 1e-3 with the Adam optimizer—was 
informed by a small grid search on a held-out validation 
set. Although we did not observe signs of overfitting 
(validation accuracy stabilized within 0.5% of training 
accuracy), we employed early stopping to avoid excessive 
specialization. No explicit regularization (e.g., dropout, 
weight decay) was necessary, likely due to the simplicity 
of the dataset. Scaling to more complex tasks will require 
more robust optimization pipelines and may necessitate 
compile-time-safe abstractions for regularization 
operators. 

In sum, while our system proves that compile-time 
tensor correctness and near-peak GPU utilization can 
coexist, important work remains to bridge the gap between 
this shape-safe foundation and the flexible, expressive 
workflows expected in modern ML pipelines. Balancing 
safety, performance, and usability remains an open 
challenge—but one that Rust’s type system, with careful 
design, is well-positioned to tackle. 
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